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The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover
of a smooth algebraic variety. The space of all infinitesimal deformations has a representation as a direct sum of
two subspaces. One is isomorphic to the space of simultaneous deformations of the branch locus and the base
of the double covering. The second summand is the subspace of deformations of the double covering which
induce trivial deformations of the branch divisor. The main result of the paper is a description of the effect of
imposing singularities in the branch locus.

As a special case we study deformations of Calabi–Yau threefolds which are non-singular models of double
cover of the projective 3-space branched along an octic surface. We show that in that case the number of
deformations can be computed explicitly using computer algebra systems. This gives a method to compute
the Hodge numbers of these Calabi–Yau manifolds. In this case the transverse deformations are resolutions of
deformations of double covers of projective space but not double covers of a blow-up of projective space. In
the paper we gave many explicit examples.
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1 Introduction

The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover
of a smooth algebraic variety. This research was inspired by the analysis of Calabi–Yau manifolds that arise as
smooth models of double covers of P3 branched along singular octic surfaces ([3, 4]). It is of considerable interest
to determine the Hodge numbers for these manifolds, but the methods to compute these are only available in very
special cases. For example, the results of [2] are applicable in the case where the octic has only ordinary double
points. Since for a Calabi–Yau 3-fold the Hodge number h1,2 equals the dimension of the space of infinitesimal
deformations our approach is to study the latter.

Let X → Y be a double cover of a non-singular, complete, complex algebraic variety Y branched along a
non-singular (reduced) divisor D. In the space H1ΘX of all infinitesimal deformations of X one can distinguish
two subspaces

T 1
X→Y : infinitesimal deformations of X , which are double covers of deformations of Y ,

T 1
X/Y : infinitesimal deformations of X , which are double covers of Y .

In Proposition 2.2 we give formulae for the above two subspaces. They have the following geometrical inter-
pretation: the space T 1

X→Y is isomorphic to the space of simultaneous deformations of D ⊂ Y , whereas T 1
X/Y

is isomorphic to the space of deformations of D as a subscheme of Y modulo those coming from infinitesimal
automorphisms of Y . The space of simultaneous deformations of D ⊂ Y is isomorphic to the cohomology group
H1(ΘY (log D)), the so-called logarithmic deformations (cf. [9, § 2]).

In the space of all infinitesimal deformations of X we identify (Proposition 2.1) a subspace isomorphic to
H1

(
ΘY ⊗L−1

)
, which is complementary to T 1

X→Y , where L is the line bundle on Y defining the double cover.
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We call deformations from this subspace transverse because they induce trivial (up to order one) deformations of
the branch locus D.

The main result of the paper is a description of the effect of imposing singularities in the branch locus. If the
divisor D is singular then there exist a sequence of blow-ups σ : Ỹ → Y and a non-singular (reduced) divisor
D∗ ⊂ Ỹ , s.t. D̃ ≤ D∗ ≤ σ∗D and D∗ is an even element of the Picard group of Ỹ . The double cover X̃ of Ỹ
branched along D∗ is a smooth model of X .

We prove that the space T 1
eX→eY

can be interpreted as the space of equisingular deformations of D in defor-
mations of Y , under the additional assumption that Y is rigid it is just the space of equisingular deformations
of D in Y (Theorem 4.1). Using this interpretation we give an explicit formula for the space of infinitesimal
deformations. This formula has a particularly simple form when the base Y is a projective space. In this case
the equisingular deformations can be computed from the equisingular ideal which can be written down in terms
of the resolution of singularities (Theorem 4.7). The main advantage of this formula is that all computations are
carried out on Pn (not on the blow-up), which makes this method very effective.

We separately study the effect of imposing singularities on the transverse deformations. It is quite easy to
compute dimension of this space, on the other hand their geometry may be quite complicated. Transverse de-
formations of double cover induce (second order) deformations of the branch divisor which are not equisingular.
We study some examples which exhibit the possible phenomena.

As a special case we study deformations of Calabi–Yau threefolds which are non-singular models of double
cover of P

3 branched along an octic surface. We show that in that case the number of deformations can be
computed explicitly using computer algebra systems. This gives a method to compute the Hodge numbers of
these Calabi–Yau manifolds. In this case dimension of the space of transverse deformations is easily computed
as the sum of genera of all curves blown-up during the resolution. The deformations of a Calabi–Yau manifold
are unobstructed, so in that case we can study small deformations. In this situation transverse deformations are
resolutions of deformations of double covers of P3 but not double covers of a blow-up of P3 (cf. Remark 5.3).

2 Infinitesimal deformations

An infinitesimal deformation of X is any scheme X ′ flat over the ring of dual numbers D = C[t]/[t2] such that
X ′ ⊗D C ∼= X . If the variety X is smooth then the space of infinitesimal deformations is isomorphic to the
cohomology group H1ΘX of the tangent bundle ΘX .

Let π : X → Y be a double cover of a smooth algebraic variety branched along a smooth divisor D. The
cover π is not determined by D itself, we have also to fix a line bundle L on Y s.t. π∗OX

∼= OY ⊕ L−1. This L
satisfies L⊗2 ∼= OY (D). Since the map π is finite we have Hi(ΘX) ∼= Hi(π∗ΘX). From [5, Lem. 3.16] we get
π∗ΘX

∼= ΘY ⊗ L−1 ⊕ ΘY (log D), where ΘY (log D) is the sheaf of logarithmic vector fields which is defined
by the following exact sequence

0 −→ ΘY (log D) −→ ΘY −→ ND|Y −→ 0 . (2.1)

The sheaf ΘY (log D) is the kernel of the natural restriction map ΘY → ND|Y and so it is the subsheaf of the
tangent bundle ΘY consisting of those vector fields which carry the ideal sheaf of D into itself.

This gives immediately

Proposition 2.1

H1ΘX
∼= H1(ΘY (log D)) ⊕ H1

(
ΘY ⊗ L−1

)
.

Proposition 2.2 (a) H1(ΘY (log D)) ∼= CoKer
(
H0ΘY → H0ND|Y

) ⊕Ker
(
H1ΘY → H1ND|Y

)
,

(b) H1(ΘY (log D)) is isomorphic to the space T 1
X→Y of infinitesimal deformations of X which are double

covers of deformations of Y ,

(c) CoKer
(
H0ΘY → H0ND|Y

)
is isomorphic to the space T 1

X/Y of infinitesimal deformations of X which
are double covers of Y .

P r o o f. The cohomology exact sequence derived from (2.1) yields

H0ΘY −→ H0ND|Y −→ H1ΘY (log D) −→ H1ΘY −→ H1ND|Y
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which proves (a).
The maps H0ΘY →H0ND|Y and H1ΘY →H1ND|Y have quite obvious interpretations. The first one asso-

ciates to an infinitesimal automorphism of Y an infinitesimal deformation of D in Y , consequently
CoKer

(
H0ΘY → H0ND|Y

)
is the space of deformations of D as a subscheme of Y modulo automorphisms of

Y . The second map H1ΘY → H1ND|Y gives for a deformation of Y the obstruction to lift it to a deformation
of D. Indeed, from the diagram

H1ΘY⏐⏐�
H1ΘD −−−−→ H1(ΘY ⊗OD) −−−−→ H1ND|Y

we see that if an element of H1ΘY belongs to Ker
(
H1ΘY → H1ND|Y

)
then its image in H1(ΘY ⊗OD) lies

in the image of H1ΘD. Consequently H1(ΘY (log D)) is isomorphic to the space of simultaneous deformations
of D ⊂ Y , i.e., pairs D′ ⊂ Y ′ such that D′ is an infinitesimal deformation of D and Y ′ is an infinitesimal
deformation of Y . Let X ′ be an infinitesimal deformation of X which is a double cover of a deformation Y ′ of
Y . Denote by D′ ⊂ Y ′ the branch locus. Restricting to the central fiber we find that D′ ⊗D C ∼= D and so D′ is
an infinitesimal deformation of D.

Conversely if D′ ⊂ Y ′ are deformations of D ⊂ Y then D′ is even and there exists a unique line bundle L′ on
Y ′ such that L′|Y ∼= L and (L′)⊗2 ∼= OY ′(D′). The line bundle L′ is defined by the square root of the transition
functions of an extension to X ′ of L⊗2. The transition functions of L′ are of the form f2 + εg, and the square
root equals f + 1

2 εg. The line bundle L′ defines a double cover X ′ → Y ′ branched along D′, restricting to the
central fiber we find that X ′ ⊗D C is a double cover of Y branched along D defined by the line bundle L. This
means that X ′ ⊗D C is isomorphic to X and so X ′ is a deformation of X . This proves (b), and also (c) easily
follows.

Corollary 2.3 (a) Every deformation of X is a double cover of a deformation of Y iff H1
(
ΘY ⊗ L−1

)
= 0.

(b) Every deformation of X is a double cover of Y iff H1
(
ΘY ⊗L−1

)
= 0 and the map H1ΘY → H1ND|Y

is injective (e.g. Y is rigid).

Remark 2.4 H1
(
ΘY ⊗ L−1

)
is isomorphic to the space of infinitesimal extensions of Y by L−1. If (Y ′,F)

is any such extension, then Spec(OY ′ ⊕ F) is an infinitesimal deformation of X ∼= Spec
(OY ⊕ L−1

)
. At the

beginning of Section 5 we give a more geometric interpretation.

Example 2.5 Let Y = P
n (n ≥ 2) and let D be a smooth hypersurface of degree 2d. Then H1ΘY = 0 for any

n, d and H1
(
ΘY ⊗L−1

)
= 0 with the only exception of d = 6, n = 2. So for (d, n) �= (6, 2) every infinitesimal

deformation of a double cover of Pn branched along a degree d smooth hypersurface is again a double cover of
Pn branched along a smooth hypersurface of the same degree.

In the case d = 6, n = 2, the dimension of the space of infinitesimal deformations of a K3 surface is 20,
whereas the dimension of the family of double sextic K3 surfaces equals dimT 1

X→Y = dimT 1
X/Y = 19.

Example 2.6 Let D1 and D2 be two surfaces if P3 of degree d1 and d2 intersecting transversely along a
smooth curve C. Let Y = BlCP

3 be the blow-up of P
3 along C, D∗ = D̃1 + D̃2, where D̃i is the strict

transform of Di. Consider the double cover π : X → Y of Y branched along D∗. The exceptional divisor of
the blow-up E and its pullback to the double cover E1 are ruled surfaces over C. Simple computations yields
h1(ΘY (log D∗)) =

(
d1+3

3

)
+

(
d2+3

3

) − 17 and h1
(
ΘY ⊗ L−1

)
= h0OC

(
1
2 (d1 + d2)

)
.

We can give an explicit description of deformations of the double cover which are not double cover of a
deformation of Y . Namely H0OC

(
1
2 (d1 + d2)

)
is the space of restrictions to C of degree 1

2 (d1 + d2) surfaces
in P3. Generic such a surface gives a deformation of the surface D1 + D2 which replace the double curve
by 1

2d1d2(d1 + d2) nodes. The double cover of P
3 has a double curve along which it is locally isomorphic to a

product of a node and a line (cA1 singularity) which deforms to a set of nodes. This family admits a simultaneous
resolution which replace the ruled surface E1 by 1

2d1d2(d1 + d2) lines (for the special element of the family the
resolution is a blow-up of a double curve whereas for the general one it is a small resolution of nodes).
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3 Resolution of singularities of a double cover

Let Y be a non-singular complex algebraic variety and let D be a divisor on Y which is even as an element of
the Picard group. Let L be a line bundle on Y s.t. L⊗2 ∼= OY (D). Consider X

π−−→ Y the double cover of Y
branched along D defined by L. X is non-singular iff D is non-singular, if D is singular then the singularities of
X are in one-to-one correspondence with singularities of D.

We can resolve singularities of X by a special resolution of D. For any birational morphism σ : Ỹ → Y

we have (σ∗D) = D̃ +
∑

j mjEj

(
where D̃ is the strict transform of D, Ej are the σ-exceptional divisors and

mj ≥ 0
)
. Therefore the divisor

D∗ = D̃ +
∑
2� |mj

Ej = σ∗D − 2
∑

j

⌊mj

2

⌋
Ej

is reduced and even. In fact it is the only reduced and even divisor satisfying

D̃ ≤ D∗ ≤ σ∗D .

Let X̃
eπ−−→ Ỹ be the double cover branched along D∗ defined by σ∗L ⊗OY

( − ∑
j	mj

2 
Ej

)
, we can find a

birational morphism X̃
ρ−−→ X which fits into the following commutative diagram

X̃
ρ−−−−→ X

eπ

⏐⏐� ⏐⏐�π

Ỹ
σ−−−−→ Y

From the Hironaka desingularization theorem it follows that we can find a sequence of blow-ups with smooth
centers σ : Ỹ → Y such that D∗ is a smooth divisor, and consequently which gives a resolution of singularities
of the double cover.

4 Equisingular deformations

Let σ : Ỹ → Y be a resolution of singularities of D as explained in the previous section. In this section we shall
study the infinitesimal deformations from H1

(
Θ

eY (log D∗)
)
.

Before going to the general case consider first a single blow-up σ : Ỹ → Y of a smooth subvariety C ⊂ Y ,
denote by E the exceptional locus of σ.

Using the Leray spectral sequence we compute

H0Θ
eY

∼= Ker
(
H0ΘY −→ H0NC|Y

)
,

H1Θ
eY

∼= CoKer
(
H0ΘY −→ H0NC|Y

) ⊕Ker
(
H1ΘY −→ H1NC|Y

)
.

The above formulas have nice geometric interpretations. The space of infinitesimal automorphisms of Ỹ is iso-
morphic to the space of infinitesimal automorphisms of Y which fix the subvariety C. The space of infinitesimal
deformations of Ỹ is isomorphic to the direct sum of the space of infinitesimal deformations of C as a subscheme
of Y modulo those coming from infinitesimal automorphisms of Y and the space of infinitesimal deformations
of Y which can be lifted to a deformation of C ⊂ Y . This vector space is isomorphic to the space of simulta-
neous deformations of C ⊂ Y modulo those coming from infinitesimal automorphisms of Y (the first summand
controls the deformations of C, while the second one the deformations of Y ).

Recall that D∗ = σ∗D − mE and so H0ND∗|eY is isomorphic to the subspace of H0ND|Y corresponding
to those infinitesimal deformations of D in Y that have multiplicity at least m along C. Consequently the
cokernel CoKer

(
H0Θ

eY → H0ND∗|eY

)
is the space of these infinitesimal deformations modulo infinitesimal

automorphisms of Y which fix C. In a similar manner the kernel Ker
(
H1Θ

eY → H1ND∗|eY

)
is the space of

simultaneous deformations of C ⊂ Y which can be extended to a simultaneous deformation C′ ⊂ D′ ⊂ Y ′ of
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C ⊂ D ⊂ Y such that D′ has multiplicity at least m along C′. As in the formula for H1
(
Θ

eY

)
the above two

subspaces gives the space of all simultaneous deformations D′ ⊂ Y ′ of D ⊂ Y , which can be extended to a
deformation C′ ⊂ D′ ⊂ Y ′ of C ⊂ D ⊂ Y such that D′ has multiplicity at least m along C′.

Going back to the general case, let σ : Ỹ → Y be a sequence σ = σn−1 ◦ . . . ◦ σ0, where σi : Yi+1 → Yi is
a blow-up of a smooth subvariety Ci ⊂ Yi such that D∗ is smooth, Y0 = Y , Yn = Ỹ . Let mi be an integer such
that D∗

i+1 = σ∗
i D∗

i − miEi, where Ei ⊂ Yi+1 is the exceptional divisor of σi. Applying the above description
to every σi separately we see that any deformation from H1

(
Θ

eY (log D∗)
)

gives (inductively) a deformation of
D∗

i ⊂ Yi. From the above description we conclude the following

Theorem 4.1 H1
(
Θ

eY (log D∗)
)

is isomorphic to the space of simultaneous deformations of D ⊂ Y which
have simultaneous resolution, i.e., which can be lifted to deformations of Ci ⊂ D∗

i ⊂ Yi in such a way that the
multiplicity of the deformation of D∗

i along deformation of Ci is at least mi.

Definition 4.2 We call an infinitesimal deformation of D in Y equisingular if it satisfies the assertion of the
above theorem.

The above theorem is particularly useful when we have an explicit description of infinitesimal deformations
of Y , for instance when Y is rigid.

Corollary 4.3 If the variety Y is rigid then the space of equisingular deformations of D in Y is isomorphic
to H1

(
Θ

eY (log D∗)
)
.

Remark 4.4 The notion of equisingularity is relative to a fixed embedded resolution of singularities and is
equivalent to the existence of simultaneous resolution, which is the definition formulated by Wahl in [12] and
Kawamata in [9].

Example 4.5 Let X ⊂ PN be a hypersurface with a cusp (A2 singularity). Then X has two natural reso-
lutions: the minimal (one blow-up of the double point) and the log-resolution (two blow-ups: first the double
point and then the intersection of the exceptional divisor with the strict transform). These two resolutions lead to
different spaces of equisingular deformations. For the first one equisingular are deformations with a double point
whereas for the second one, with a cusp. The explanation is that the only information that we can get from first
resolution (minimal) is that we have a hypersurface with a double point. From the second we know that the strict
transform is tangent to the exceptional locus which means that the second derivative of the equation vanish along
a line.

If Y is rigid we can use Theorem 4.1 to give a more direct description of the space of equisingular deformations
of D in Y . Consider an embeded resolution σ : Ỹ → Y of D in Y by a sequence of blow-ups with smooth centers.
More precisely assume that σ = σn−1 ◦ . . . ◦ σ0, where σi : Yi+1 → Yi is a blow-up of a smooth subvariety
Ci ⊂ Yi, Y0 = Y , Yn = Ỹ . Denote by Ei ⊂ Yi+1 the exceptional divisor of σi, let mi be a nonnegative integer
such that D∗

i+1 = σ∗
i D∗

i − miEi, where D∗
i is an effective divisor in Yi and D∗

0 = D. Assume that the divisor
D∗ := D∗

n is non-singular.
Let I(Ci) be the ideal sheaf of of Ci in Yi and let Ĩmi

i denotes (for nonnegative integer mi) the push-forward
(σi−1 ◦ . . . ◦ σ0)∗(I(Ci)mi) to Y of the mi-th power of I(Ci). Denote by Ji the image of the homomorphism
ΘYi ⊗ OD∗

i
→ ND∗

i |Yi
and by J̃i its push-forward (σi−1 ◦ . . . ◦ σ0)∗(Ji) to Y . Let J denote the image of the

map H0(ΘY ) → H0ND|Y induced by the exact sequence (2.1).

Theorem 4.6

H1
(
Θ

eY (log D∗)
) ∼=

n−1⋂
i=0

(
H0

((
Ĩmi

i ⊗ND|Y
)

+ J̃i

))/
J .

P r o o f. By Theorem 4.1 H1
(
Θ

eY (log D∗)
)

is the space of equisingular deformations of D in Y . As the
equisingularity condition can be verified for each center of blow-up separately we shall study a single blow-up
σi : Yi+1 → Yi. We have to find deformations of D∗

i which vanish to order mi along a deformation of Ci. Since
every deformation of Ci is locally given by a vector field v we can take a deformation of D∗

i , transform it back
by −v and verify if the result vanishes along Ci to order mi.

Equivalently we can start with an infinitesimal deformation of D∗
i vanishing to order mi along Ci and trans-

form it by v. Locally this deformation is given by f + εg, where f is a local equation of D∗
i and g ∈ I(Ci)mi .
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So we have to substitute x + ε · v(x) in f + εg. Taking into account ε2 = 0 we get

f(x) + ε (f ′(x) · v(x) + g(x))

so the deformation is given by the element f ′(x) · v(x) + g(x) of I(Ci)mi + Ji. Pushing-forward the above
formula to Y proves that the space of equisingular deformations of D in Y is isomorphic to⋂n−1

i=0

(
H0

((Ĩmi

i ⊗ ND|Y
)

+ J̃i

))
. To get H1

(
Θ

eY (log D∗)
)

we have to mod out by the space of deforma-

tions of D induced by infinitesimal automorphisms of Y , i.e., J.

We shall study in more detail the case when Y = P
N , in this situation every coherent sheaf on Y is given by a

graded module over C[X0, . . . , XN ] which makes computations much simpler. Observe first that J equals (JF )d

the space of degree d forms in the Jacobian ideal JF :=
(

∂F
∂Z0

, . . . , ∂F
∂ZN

)
of F , where d is the degree of D and

F is its homogeneous equation. If Ci is not contained in the exceptional locus of σi−1 ◦ . . . ◦ σ0 then Ĩmi

i equals

the symbolic power I(
C̃i

)(mi) of the ideal sheaf I(
C̃i

)
of C̃i, where C̃i is the image of Ci in PN . The ideal

sheaf I(
C̃i

)
is the sheaf associated to the homogeneous ideal I

(
C̃i

)
of C̃i. Let Ji

F be the C [X0, . . . , XN ]-module

associated to the sheaf J̃i (in fact Ji
F is an ideal in C[X0, . . . , XN ] containing JF ). Define the equisingular ideal

of D in PN (w.r.t. σ) by

Ieq(D) =
n−1⋂
i=0

(
I
(
C̃i

)(mi) + Ji
F

)
.

Theorem 4.7 The space of equisingular deformations of D is isomorphic to the space of degree d forms in
the quotient of the equisingular ideal modulo the Jacobian ideal

H1
(
Θ

eY (log D∗)
) ∼= (Ieq(D)/JF )d .

If Ci is contained in the exceptional locus of σi−1 ◦ . . . ◦ σ0 then the points of Ci do not correspond to
ordinary points of Y but to infinitely near points. Vanishing at an infinitely near point gives on P

n some tangency
condition, which has to be computed in local coordinates (cf. Example 6.3).

The above theorem represents the space of equisingular deformations as a quotient of two subspaces of the
space of degree d homogeneous forms, and so it gives a very effective tool for explicit computations. It is
particularly suitable for computations with computer algebra systems. The main difficulty is to find the ideal Ji

F,
we have to describe the vector fields on Yi, unfortunately they push-down to rational vector fields on PN . If we
are able to find those rational vector fields on PN which lift to regular vector fields on Yi then we can compute
the ideal Ji

F in C[X0, . . . , XN ] which contains regular functions generated by results of applying those vector
fields to the equation of D. If we have an explicit descriptions of the resolution σ we can use local coordinates
to compute Ji

F. Consider the map σ(i) : Yi → Y . The regular vector fields are transformed to Y by applying
differential of σ(i). The results on Y are locally given by rows of the jacobian matrix of σ(i) pushed to Y . The
same can be done by lifting the equation of D to Y i, taking partial derivatives and pushing to Y .

In many cases the rational vector fields do not appear, which makes the computation of the equisingular ideal
much simpler. Let D =

⋃
i Di ⊂ P3 be an arrangement as defined in [4], i.e., a sum of smooth components Di

such that the components Di and Dj (for i �= j) intersect transversally along a smooth curve Cij , the curves Cij

and Ckl are either equal, or disjoint, or they intersect transversely (locally D looks like a plane arrangement). Let
σ be a natural resolution of D. Let σ : Ỹ → Y be the following resolution of D, first we blow-up the p-fold
points that do not lie on a p−1-fold curve, then the multiple curves. Denote by Ci (i = 0, . . . , n−1) the multiple
points and curves of the arrangement and by mi the corresponding multiplicities.

Lemma 4.8

Ieq(D) =
n−1⋂
i=0

(
I(Ci)mi + JF

)
.

P r o o f. Equisingular deformations are given by arrangements of the same combinatorial type. They are
given by deformations of the components of D which preserves the multiplicities at points and curves. Clearly
the centers of successive blow-ups can be interpreted as subsets of P3, and the deformations of the centers can be
obtained as the deformations in P3. The same can be easily computed in local coordinates.
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5 Transverse deformations

Proposition 2.1 gives a decomposition of the group of deformations of a double cover into two subgroups. In
previous section we studied the first summand (containing those deformations which are double covers), now
we shall concentrate on the second one isomorphic to H1

(
ΘY ⊗ L−1

)
. We shall call deformations from this

subspace transverse. A double cover of Y branched along a divisor D can be given as a hypersurface t2 = s in
the total space of the line bundle OY (D), where s is a section defining D. Transverse deformations of a double
cover corresponds to the deformations of the type t2 + 2εtf = s. Those deformations do not give non-trivial first
order deformations of D, as we can write the deformation locally as (t+ εf)2 = s+(εf)2, which is zero because
ε2 = 0. On the other hand, one can use this to formally represent such transverse deformations as particular
second-order deformations of D, which is very useful in practice. This also explain the name transverse.

Since we have the following isomorphisms

H1
(
ΘY ⊗ L−1

) ∼= H1
(
Ωn−1

Y ⊗ K∨
Y ⊗ L−1

) ∼= (
Hn−1

(
Ω1

Y ⊗ KY ⊗ L))∨
in many cases (for instance when D is a smooth divisor in a weighted projective space) it is easy to compute
to dimension of this vector space. We shall study the effect on h1

(
ΘY ⊗ L−1

)
of introducing singularities in

the branch locus of D, so consider a blow-up σ : Ỹ → Y of a smooth subvariety C ⊂ Y , denote by E the

exceptional locus of σ, and let m be such that D∗ = σ∗D − mE. Since m = 2
⌊

multD|C
2

⌋
, it is an even number

and define L̃ := σ∗L ⊗ O
eY

( − m
2 E

)
. L̃ is the line bundle on Ỹ defining the double cover, so our goal is to

compare h1
(
ΘY ⊗ L−1

)
with h1

(
Θ

eY ⊗ L̃−1
)
.

We have the following exact sequence

0 −→ σ∗(Ω1
Y ⊗ L⊗ KY

) ⊗O
eY (kE) −→ Ω1

eY
⊗ L̃ ⊗ K

eY −→ Ω1
E/C ⊗OE(−k) ⊗ σ∗(L ⊗ KY ) −→ 0 ,

where k = codimY C − m
2 − 1. Now, we can use the Leray spectral sequence to compute the required coho-

mologies, the resulting formulas depends on the actual value of k.
The most complicated is the case when k < 0. Although in this case

Riσ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

)
= 0 for i > 0 ,

but on the other hand the direct image

σ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

)
is not locally free, so we cannot say too much in that case.

The easiest is the case when k > 0. Since codimY C > k + 1 simple computations show that

σ∗
(O

eY (kE)
)

= OY , Riσ∗
(O

eY (kE)
)

= 0 for i ≥ 1 ,

Riσ∗
(
Ω1

E/C(−k)
)

= 0 for i ≥ 0 .

Using the projection formula we get

σ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

) ∼= Ω1
Y ⊗ L⊗ KY ,

Riσ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

)
= 0 for i ≥ 1 ,

and by the Leray spectral sequence

H1
(
Θ

eY ⊗ L̃−1
) ∼= H1

(
ΘY ⊗ L−1

)
.

The most interesting is the case when k = 0 (crepant resolution). Since

σ∗
(O

eY

)
= OY , Riσ∗

(O
eY

)
= 0 for i ≥ 1 ,

σ∗
(
Ω1

E/C

)
= 0 , R1σ∗

(
Ω1

E/C

) ∼= OC , Riσ∗
(
Ω1

E/C

)
= 0 for i ≥ 2 ,
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applying the projection formula and using the above exact sequence we get

σ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

) ∼= Ω1
Y ⊗ L⊗ KY , R1σ∗

(
Ω1

eY
⊗ L̃ ⊗ K

eY

) ∼= OC ⊗ L⊗ KY ,

Riσ∗
(
Ω1

eY
⊗ L̃ ⊗ K

eY

)
= 0 for i ≥ 2 .

Now, by the Leray spectral sequence

Hn−1
(
Ω1

eY
⊗ L̃ ⊗ K

eY

) ∼= Hn−1
(
Ω1

Y ⊗ L⊗ KY

) ⊕ Hn−2(OC ⊗ L⊗ KY )

and by Serre duality

H1
(
Θ

eY ⊗ L̃−1
) ∼= H1

(
ΘY ⊗ L−1

)
if codimY C < n − 2 ,

H1
(
Θ

eY ⊗ L̃−1
) ∼= H1

(
ΘY ⊗ L−1

) ⊕ H0
(
detNC ⊗ L−1

)
if codimY C = n − 2 .

As a special case we get the following proposition (notations are as before Theorem 4.1).

Proposition 5.1 If KY = L−1 and σ : Ỹ → Y is a sequence of blow-ups satisfying 1
2 D∗ + K

eY =
σ∗( 1

2D + KY

)
then

h1
(
Θ

eY ⊗ L̃−1
)

= h1
(
ΘY ⊗ L−1

)
+

∑
codim Ci=2

h0(KCi) .

Observe that in the latter case m = 2, which means that we are considering a blow-up of a subvariety of
codimension 2 such that the multiplicity of the divisor along it is 2 or 3. We shall give a geometric description of
transverse deformations in that case.

Assume first that the multiplicity of D along C is 2. If D = D1 + D2 is a sum of two smooth divisors
intersecting transversely along C we have H0

(
detNC ⊗ L−1

) ∼= H0L. Let fi ∈ H0OY (Di) be a section
defining Di. For any section f ∈ H0L we consider the divisor Dε = {f1 · f2 + (εf)2 = 0}. The family of
double covers of Y branched along Dε have simultaneous resolution of singularities. If the section f does not
vanish along C then the divisor Dε does not contain C. If the zero set of f intersects C transversely, then the
singular locus of Dε has codimension 2 in Dε, D has “compound nodes” at {f1 = f2 = f = 0}. Moreover Dε

is irreducible and admits a small resolution.
If a component of the double points locus C intersects other components of D, then H0

(
detNC ⊗ L−1

)
consists of sections of L satisfying certain additional conditions. For instance if D = D1 +D2 +D3, D1 and D2

intersect transversely along C and D3 intersects transversely C, then we consider divisors Dε = f1f2f3 +(εf)2,
where f ∈ H0(L) is any section vanishing along f1 = f2 = f3. If there are many such sections then as before
the dimension of the singular set goes down. As the singular set we get the intersection of C with f = 0.
Singularities of Dε at points where f1 = f2 = f = 0, f3 �= 0 have the same type as before (A1) but at points of
D1 ∩ D1 ∩ D3 we get singularities of type D4 in general.

Now consider a triple subvariety C of the divisor D. The transverse deformations of the double covers corre-
spond to divisors which are also singular along C, so this time the singular set does not decrease but the type of
singularity can change. If D = D1 + D2 + D3, where Di are smooth divisors such that Di and Dj intersects
transversely along C then H0

(NC ⊗ L−1
)

consists of the sections of NC that vanish along C. If C is a compo-
nent of the triple point locus which intersects some components of D that do not contain C, then H0

(NC ⊗L−1
)

contains the sections of NC that vanish along C and satisfy additional vanishing conditions (of higher order) at
the intersection points.

More generally if the multiplicity of D along a subvariety (this time of arbitrary codimension) is an odd number
2p + 1, then after blowing-up we add to the branch locus the exceptional divisor. The transverse deformations
corresponds to the divisors that have multiplicity 2p along C.

In the following series of examples we shall see some of the possible phenomena occurring for divisors in P3.
In higher dimension the situation can be much more complicated.

Example 5.2 Let D = D1 + D2 + D3 be a sum of three surfaces in P3 of degree resp. d1, d2 and d3. Let fi

be a homogeneous equation of Di.
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For d1 = d2 = 1 and d3 = 2, the intersection D1 ∩ D2 ∩ D3 contains two points. For any degree 2 form
vanishing at these two points f we consider a divisor Dε = f1f2f3 + (εf)2. For generic choice of f the divisor
Dε has four nodes (the points of intersection of conics D1 ∩ D3 and D2 ∩ D3 with f = 0 not lying on the line
D1 ∩ D2) and additional two double points (of type D4) at D1 ∩ D2 ∩ D3.

If d1 = d2 = 1 and d3 = 4, then D1 ∩ D2 ∩ D3 contains four points, so every degree 3 form that contains
them contains the line D1 ∩ D2. For a generic choice of such cubic f the divisor Dε = f1f2f3 + (εf)2 has a
double line D1 ∩ D2 and 16 nodes (the points of intersection of quartics D1 ∩ D3 and D2 ∩ D3 with f = 0 not
lying on the double line).

Assume that d1 = d2 = d3 = 2 and the forms fi are dependent. Then the Di’s are elements of a pencil
of quadrics containing a fixed elliptic curve C. For a generic cubic form f vanishing at C the divisor Dε =
f1f2f3 + (εf)2 has double points at C (c-A2 singularities).

Again take f1, f2 and f3 three quadrics containing a smooth elliptic curve C and let f4 be a generic quadric.
For a quartic form f which vanishes along C and has double zeros at the eight points of intersection of C with D4

the divisor Dε = f1f2f3f4 +(εf)2 have eight fourfold points, it can be written in the form G4(f1, f2, f4), where
G4 is a quartic form (cf. Example 6.2). All the transverse deformations can be written as f1f2f3f4 + ε2g, where
g is an octic form with multiplicity 2 along C and eight fourfold points at D1 ∩ D2 ∩ D3 ∩ D4. Observe that
the space of such octic forms has dimension 12. It contains the space of transverse deformations of dimension 7
and a fivedimensional subspace of the space of equisingular deformations (those octics that can be written as a
degree four polynomial in f1 and f2).

Take D1, D2 and D3 quadrics intersecting at 8 points and D4 a generic quadric vanishing at these points (f4 is
a linear combination of f1, f2, f3). For a quartic form f which has double zeros at the eight points of intersection
of the fi’s, the divisor Dε = f1f2f3f4 + (εf)2 has eight ordinary fourfold points and can be written in the form
G4(f1, f2, f3), where G4 is a quartic form (cf. Example 6.2). In this example transverse deformations can be
written as f1f2f3f4 + ε2g, where g is an octic form with eight fourfold points at D1 ∩ D2 ∩ D3 ∩ D4.

Remark 5.3 The space H1
(
Θ

eY ⊗ L̃−1
)

contains deformations of X̃ which are not a double cover of a
deformation of Y . On the other hand if Y = Pn and D is a degree d hypersurface then H1

(
ΘPn

( − d
2

))
= 0

(providing (n, d) �= (2, 6)). From the above description it follows that H1
(
Θ

eY ⊗ L̃−1
)

also corresponds to

deformations of D in Pn but not to equisingular ones. So the deformations of X̃ are smooth models of double
cover of Pn but not a double cover of a blow-up of Pn (cf. Example 2.6).

6 Deformations of double solids Calabi–Yau threefolds

In a special case when dimY = 3, KY
∼= L−1 and k = 0 we get h1

(
Θ

eY ⊗ L̃−1
)

= h1
(
ΘY ⊗ L−1

)
if C is a

point and h1
(
Θ

eY ⊗ L̃−1
)

= h1
(
ΘY ⊗L−1

)
+ g(C), where C is a curve (g(C) denotes the genus of C). Now, if

we consider an octic surface D ⊂ P
3 and find a resolution of the double cover induced by a sequence σ : Ỹ → P

3

of blow-ups of fourfold and fivefold points and double and triple smooth curves then h1
(
Θ

eY ⊗ L̃ )
is the sum of

genera of all blown-up curves. In this situation the double cover π : X̃ → Ỹ is a Calabi–Yau manifold. Every
blow-up of a curve gives rise to a ruled surface in X̃ . For a ruled surface E ⊂ X̃ over a genus g > 1 curve,
E deforms with X on a submanifold of codimension g of the Kuranishi space of X̃ , over a general point of the
Kuranishi space E is replaced by a sum of 2g − 2 rational curves (see [10, 13]).

Remark 6.1 Theorem 4.7 and the above description allow us to compute the number of infinitesimal defor-
mations, and consequently also the Hodge numbers of the Calabi–Yau manifold X̃ . To compute the number
of equisingular deformations of the branch locus we can use a computer algebra system. We give two explicit
examples, in one the dimension of the space of equisingular deformations can be computed directly, in the other,
using Theorem 4.7 and a Singular program.

Example 6.2 Let D =
{
(x2 − z2)4 + (y2 − w2)4 + (z2 − w2)4 = 0

}
. Then D is an irreducible octic with

eighth ordinary fourfold points in the vertices of a cube. One easily verifies that the space of octics with fourfold
points in the vertices of a cube has dimension 14 (and there are only finitely many automorphisms of P3 that fixes
the vertices of cube, namely the symmetries of an affine cube).
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We can deform this octic to another octic with eight 4-fold points if they are intersection of three quadrics,
so we can take generic seven points and then the eighth is determined. This means that the kernel of the map
H1Θ

eY → H1ND∗|eY has dimension 6 and H1Θ
eX

∼= H1
(
Θ

eY (log D∗)
) ∼= C20. Since X̃ is a Calabi–Yau

manifold H1Θ
eX
∼= H1Ω2

X̃
. Moreover e(X) = −8 and so we get H1Ω1

X̃
∼= C16. Since the group of symmetric

(w.r.t. natural involution) divisors has rank 9, the rank of the skew-symmetric part of the Picard group is 7.

Example 6.3 Let D be the image of generic abelian surface of type (1, 4) by the mapping defined by the
polarization. Surfaces of this type were studied in the paper [1]. The octic D has four fourfold points and a
double curve which is a union of four rational curves. The singularities of D can be resolved by blowing first
the four fourfold points and then the double curves (which after the first blow-up are disjoint and smooth). So
h1

(
Θ

eY ⊗ L̃−1
)

= 0.
The equation of D depends on three parameters, we shall consider explicit example with λ0 = λ1 = λ2 =

λ3 = 1, the equation takes the form

f = x4y4 + x4z4 + z4t4 + y4z4 + x4t4 + y4t4 − 2x2y2z4 − 2x4z2t2

+x2y2z2t2 + 2y4z2t2 + 4y2z4t2 + 2x2y2t4 − 4x2z2t4 .

The fourfold points of f have coordinates (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), and (0 : 0 : 0 : 1), and the
double curves are given by

x = y2z2 + y2t2 + z2t2 = 0 ,

y = x2z2 + x2t2 + z2t2 = 0 ,

z = y2x2 + y2t2 + x2t2 = 0 ,

t = y2z2 + y2x2 + z2x2 = 0 .

Since the double curves have nodes as the only singularities the symbolic powers coincide of their ideals with
usual powers. If we consider local coordinates (x, y, z) around the point (0 : 0 : 0 : 1), then the blow-up at this
point is given locally by the maps (x, y, z) �→ (x, xy, xz), (x, y, z) �→ (xy, x, yz) and (x, y, z) �→ (xz, yz, z).
Taking the Jacobi matrices of these maps and representing them in the coordinates on P3 we get the following
rational vectorfields 1

x
∂
∂x , 1

y
∂
∂y , and 1

z
∂
∂z .

To compute the dimension of the space of equisingular deformations we use the following program in Singular

ring r=0,(x,y,z,t),dp;
poly
octic=xˆ4*yˆ4+xˆ4*zˆ4-2xˆ2*yˆ2*zˆ4+yˆ4*zˆ4-2xˆ4*zˆ2*tˆ2+\

xˆ2*yˆ2*zˆ2*tˆ2+2yˆ4*zˆ2*tˆ2+4*yˆ2*zˆ4*tˆ2+xˆ4*tˆ4+\
2xˆ2*yˆ2*tˆ4+yˆ4*tˆ4-4*xˆ2*zˆ2*tˆ4+zˆ4*tˆ4;

ideal jff=jacob(octic);
ideal jf=ideal(jff[1]/x,jff[2]/y,jff[3]/z,jff[4]/t);
ideal i1=std((x,y,z)ˆ4+jff);
ideal i2=std((x,y,t)ˆ4+jff);
ideal i3=std((x,z,t)ˆ4+jff);
ideal i4=std((y,z,t)ˆ4+jff);
ideal i5=std((ideal(x,yˆ2*zˆ2+yˆ2*tˆ2+zˆ2*tˆ2))ˆ2+\

ideal(jff[1],jf[2],jf[3],jf[4]));
ideal i6=std((ideal(y,xˆ2*zˆ2+xˆ2*tˆ2+zˆ2*tˆ2))ˆ2+\

ideal(jf[1],jff[2],jf[3],jf[4]));
ideal i7=std((ideal(z,yˆ2*xˆ2+yˆ2*tˆ2+xˆ2*tˆ2))ˆ2+\

ideal(jf[1],jf[2],jff[3],jf[4]));
ideal i8=std((ideal(t,yˆ2*zˆ2+yˆ2*xˆ2+zˆ2*xˆ2))ˆ2+\

ideal(jf[1],jf[2],jf[3],jff[4]));
ideal ieq=std(intersect (i1,i2,i3,i4,i5,i6,i7,i8));
int s=0;
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for (int i=1;i<=9;i++)
{s=s+hilb(std(jff),2)[i]-hilb(ieq,2)[i];};
s;

from which we get h1
(
Θ

eY (log D∗)
)

= 3 and consequently h1
(
Θ

eX

)
= h1,2

(
X̃

)
= 3. As the Euler characteristic

of X̃ is easily computed to be 24 we have h1,1(X) = ρ(X) = 15. It is easy to see that the group of symmetric
divisors on X has rank 9 (pullback of a plane in P3 and 8 exceptional divisors of blow-ups), so the rank of the
group of skew-symmetric divisors is 6.

The dimension of transverse deformations is 3, we get the same result if we do not consider the rational vector
fields in the formula for transverse deformations. The explanation is that any component of the double points
locus is a rational quartic with four nodes. After blow-up of nodes we get rational curves, which after deformation
and projecting to P3 are quartic with three nodes. Since the quartic with three nodes is uniquely determined by
the nodes and the tangent lines at nodes, the deformation can be realized as a deformation in P3.
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